Transforming tomorrows, today.
Yoav — “Mr. Motion”

Body, Prostate applications
INVESTMENT HIGHLIGHTS

ACOUSTIC THERAPY
Disruptive platform to potentially address 150+ conditions

REVOLUTIONIZE
Treatment of challenging neurological conditions

$20B+ TAM

$70M Revenue Plan
40% y/y growth

GLOBAL REIMBURSEMENT

7 CLEARED INDICATIONS
FDA, CE, JP & CN

~200 Global Patents & Pending Patents
As of Q3 2021

$225M Revenue Plan by 2024

97 Global Installs
As of Q3 2021
ACOUSTIC THERAPY: HOW IT WORKS

20 YEARS IN THE MAKING

CLOSED LOOP SYSTEM WITH REAL TIME IMAGING AND THERMOMETRY

STEERABLE ACOUSTIC ENERGY

NON-IONIZING RADIATION
DISRUPTIVE PLATFORM FOR NEUROLOGICAL DISORDERS

- **Neuro Ablation**
- **BBB Opening**
- **Neuro Modulation**

*Investigational – not approved / **Cleared in Japan

- BBB opening for Alzheimer disease*
- MRgFUS thalamotomy for essential tremor, TDPD and chronic pain
- FUS BBB opening for ALS*
- BBB opening for brain mets*
- BBB opening for Alzheimer disease*
- MRgFUS neuromodulation for use addiction*
- MRgFUS pallidotomy for Parkinson disease**
- MRgFUS capsulotomy for OCD and MDD*
- FUS BBB opening for primary brain tumours*

Meng et al. Nature. 2020
Neuro Ablation
Transformative Acoustic Therapy
ACOUSTIC THERAPY: REDEFINING PRECISION LESIONING

Outpatient solution for patients that fail medication therapy

Improves safety and predictability relative to radiation therapy

Eliminates invasiveness required for transcranial ablation

Comparable outcomes without open surgery + implantable devices

Movement Disorder Treatments

Enhance the efficacy of drugs or diagnostics

- Transient
- Repeatable
- Conformal
- Non-invasive
TMZ Study – treated tissue volume

- April 2018: ½ cc targets, Bolus, Tissue 5cc
- January 2019: Infusion
- August 2019: Dedicated GUI, Feedback, T2* monitoring, conformal targets, Tissue 30cc
- June/July 2020: Shave less, Tissue 65cc
- May 2021: Larger targets, Local feedback, Large Steering Envelope XD, More μbubbles

* In the Carbo Study
Auto focusing improvements for epilepsy treatments
CT BASED CORRECTION

Uses the CT information to correct each element
CHALLENGES IN CT BASED CORRECTION

- The CT based correction relies on
- Accurate registration
- Consistent CT properties
- Accurate simulations
- CT based correction is effective enough for some central targets (e.g., thalamus)
- Lateral targets (e.g., hippocampus) have higher incident angles, resulting in challenging treatments
TECHNOLOGICAL CHALLENGES – INCIDENCE ANGLE

Number of effective elements per target

Elements below angle

- VIM
- Hippocampus

Incidence angle
HOW DOES THE AF WORK
EXPERIENCE IN ET CASE – RETREATMENT EXAMPLE

107011
Re-Treatment (AF)
Original Treatment (CT)
THANK YOU!