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Super Resolution Pitch Determination of Speech
Signals

Yoav Medan, Eyal Yair, and Dan Chazan

Abstract—Rased on a new similarity model for the voice excitation
process, a novel pitch determination procedure is derived. The unigue
featnres of the proposed algorithm are infinite (super) resolution, bet-
ter accuracy than the difference limen for Fy, robustness te noise, re-
liability, and modest computational complexity. The algorithm is
instrumental to speech processing applications which require pitch
synchronous spectral analysis.

I. INTRODUCTION

TCH determination is considered one of the most difficult
tasks in speech processing. Many pitch determination al-
gorithms (PDA’s) were proposed, both in the time and the fre-
quency domains (e.g., [1]-[7]). The most comprehensive survey
of PDA’s is presented in [8], whete it is claimed that “*we do
ant have a sinele nitch determination aleorithm which operates

sampling interval, contains a time gquantization error which may
lead to audible distortions in speech coding applications [9].
The PDA introduced in this paper overcomes most of these
difficulties by introducing a new model for the similarity in the
pitch process. This model allows guantifying the degree of sim-
ilarity between exactly two adjacent and nonoverlapping pitch
intervals, with an infinite time resolution. The similarity model
takes into account the intensity modulation that may exist be-
tween successive periods to yield an instantaneous value of the
pitch interval. The resulting algorithm offers a robust, high-res-
olution, and efficient implementation scheme which is capable
of avoiding the audible distortions associated with common
pitch based speech coding technigues. Given the high resolution
and accuracy of the estimated pitch values afforded by the new
anntoach it was possible to develop an efficient and accurate
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Pitch estimation by multiple octave
decoders



What is pitch, fundamental frequency or FO 7
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The fundamental frequency or FO is the " h
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frequency at which vocal chords vibrate in /\\/ v\/\/\/\}
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voiced sounds.
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Chuck Larson

When people hear their own voice through
earphones, and when the voice pitch through
the earphones is unexpectedly changed
upwards or downwards, people automatically
adjust the pitch of their voice.

This feedback mechanism does not work well for
people with Autistic Syndrome Disorder (ASD)




Pitch estimation: goals

We propose a new model for pitch estimation that will have a better generalization by

o signal representation suitable for pitch
o dynamic filters that are sufficiently narrow to resolve the harmonic at the pitch

frequency and are sufficiently wide to integrate higher-order harmonics.



Pitch estimation: our approach

We propose a hew model for pitch estimation that will have a better generalization by

o An encoder that learns a representation of the raw signal.

o Multiple decoders, where each decoder estimates:

o Pitch value within a unique frequency band corresponds to a single octave

o The confidence that the pitch is indeed in that frequency band.

Segal, Arama-Chayoth, Keshet, 2021



Pitch estimation: our approach

p* = argmax,, ,,, P(p|m, 2)P(m|z)
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discrete pitch

band m
value j

Segal, Arama-Chayoth, Keshet, 2021



Pitch estimation: our approach
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Pitch estimation: our approach

We refer to our model as PiMOD (Pitch estimation by Multiple Octave Decoders).

COMPARISON OF PIMOD AND THE BASELINE ON THE MDB AND KEELE
DATASETS. GREATER RPA AND VR VALUES INDICATES BETTER COMPARING PIMOD TO OTHER ALGORITHMS ON THE MDB AND KEELE

PERFORMANCE, WHEREAS LOWER GPE VALUES ARE BETTER

Dataset Model VR RPA25 RPAS0 GPE10

b baseline 998E01 855204 02501 350%0.17 Dataset PRTA‘?B[IB] ;9% R;’;“gs R;’SA;SO Gf’g”
PiIMOD 99.9-+-0.00 86.0+-0.3 93.4+0.1 2.46-0.14 ‘ : : :
_ vpg  PYIN [12] 89.0 44.0 58.5 19.4
Keele bqselme 958i07 727i20 866:|:10 718i041 SWIPE []6] R4.7 70.7 77.3 18.1
PIMOD  96.1+0.8 73.3+2.6 86.6+1.2 6.69+0.69 CREPE [19] 99.7+0.1 84.9+0.6 92.2+0.5 2.9+0.23

CREPE-D 99.8+£0.1 85.0+04 923404 2.8+0.27
PiMOD 99.9+0.00 86.0+0.3 93.4+0.1 2.46+0.14

PRAAT [13] 90.9 56.8 76.9 11.4
Keele pYIN [12] 89.6 49.8 71.4 12.1
SWIPE [16] 83.1 52.3 73.9 17.7

CREPE [19] 95.0£0.3 73.1£2.0 86.2+0.7 7.67£0.25
CREPE-D 95.7+£0.2 73.9+2.0 86.4+0.7 7.224+0.26
PIMOD 96.1+0.8 73.3+2.6 86.6+1.2 6.69+0.69

Segal, Arama-Chayoth, Keshet, 2021



Formant estimation and tracking using
deep networks



amplitude

What are formants?

frequency

Formants are considered to be
resonances of the vocal tract
during speech production.

The formant frequencies
approximately correspond to the
peaks of the spectrum of the vocal
tract. These peaks cannot be easily
extracted from the spectrum, since
the spectrum is also tainted with
pitch harmonics.



Does the Queen speak the Queen’'s English?

Does the Queen speak the Queen’s English?

he pronunciation of all languages il as i (1] as in "hid! [¢] as in 'head’
changes subtly over time', mainly
owing to the younger members of the

community’. What is unknown is whether

older members unwittingly adapt their

accent towards community changes. Here

we analyse vowel sounds from the annual

Christmas messages broadcast by HRH

Queen Elizabeth II during the period

between the 1950s and 1980s. Our analysis [r] as in ‘rub’ [0] as in "hard' [0} as in ‘rob’

=
w

(=] £

reveals that the Queen’s pronunciation of : ¢ ' 8
some vowels has been influenced by the 5 5 S
standard southern-British accent of the
1980s which is more typically associated 8 S 8
with speakers who are younger and lower in . s S

. 2 .

12.0 11.0 .

the social hierarchy

SO 105 9.0
Phoneticians have documented many

A%

types of change to the standard accent of (@] as in 'had" [5] as in 'hoard" [s]as in 'herd'
' British English known as ‘received pronun- P S @
The Quee ns ciation”, some of which have a corollary in ) )85

the changing attitudes towa 1al class.
There was a marked social stratification in
Britain in the 1950s’, and in 1963 the pho-
netician David Abercrombie wrote, “One
either speaks received pronunciation, or one
does not, and if the opportunity to learn it
in youth has not arisen, it is almost impossi- [v] as in *hood' -

ble to learn it in later life””. But as class dis- ; -" ltu re, 2000

o p
tinctions have become more blurred’, so too

First formant frequency (Bark)




Formant estimation: new approach
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Pitch-synchronous spectrum, for different values
of pitch (true pitch is 123 Hz)

Dissen and Keshet, 2016; 2019



Formant estimation: our approach |

F1 F2 F3

Praat -------------------------------------------- 130 230 267
"""" WaveSufer | 70 | 94 | 154
CwsR | e 105 | 125

DeepFormants 81 112

............................................................................................................................

DeepFromants Il (CNN) 65 94

inter-labler

69 84

Dissen and Keshet, 2016; 2019



Formant estimation: our approach |

X Conv 2D layers

Shrem, Kreuk, and Keshet, 2022
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Formant estimation: our approach |

= Encoder(X)




Formant estimation: our approach |

I)r<l?1,jgb,.Z23hZ)
= PI’(Fl‘Z) PI‘(F2|F1, Z) PI’(Fg‘FQ, Fl, Z)

Decoder F,




Formant estimation: our approach |

I)r<l?1,jgb,.Z23hZ)
= PI’(Fl‘Z) PI‘(F2|F1, Z) PI’(Fg‘FQ, Fl, Z)

Decoder F,




Formant estimation: our approach |

I)r<le,lﬂg,fﬂgh2)
= PI’(Fl‘Z) PI‘(F2|F1, Z) PI’(Fg‘FQ, Fl, Z)

Decoder F,




Formant estimation: our approach |

PI‘(Fl, FQ, F3|Z)
= PI’(F1|Z) PI‘(F2|F1, Z) PI’(Fg‘FQ, Fl, Z)




Formant estimation: our approach |

Dataset Method F F5 Fs3
WaveSurfer 70 96 154
VTR DeepFormants o0 86 104
Ours 39 30 47
WaveSurfer 68 190 182

DeepFormants (Train VTR) 71 160 131
Hillenbrand = DeepFormants (Train All) 36 100 116

Ours (Train VTR) 74 150 125
Ours (Train All) 26 78 82
WaveSurfer 128 181 —
DeepFormants (Train VIR) 228 168 —
Clopper DeepFormants (Train All) 103 157 —
Ours (Train VTR) 99 147 -

Ours (Train All) 49 64 —




Time-scale modification of speech



Time-scale modification of speechc

When you want to speed-up or slow-down the speech...

o You

Apple
@ Podcasts




5 sec
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|

Cohen, Kreuk, and Keshet, 2022



Time-scale modification of speech: signal processing
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Time-scale modification of speech: deep learning
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Cohen, Kreuk, and Keshet, 2022



Time-scale modification of speech: deep learning

Aggregation by method

100+ T o lllllllllllolllolslooooioooooooooos — = half |

Mean ScalerGAN success rate

Methods
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Time-scale modification of speech: deep learning

Aggregation by rate
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STEGAN -0- GRAPHY
(Secret Writing)



Steganography: problem setting

message | Il

- steganographic - . . ~
. function }—‘—> inverse function |44

carrier C




Steganography: model

Latent
Representation

1apooaQg
abessaN

SNJOMISN
Japoouq

L(c,m) = Ac|lc — De(E(c, m))||3 + Am|lm — D (De(E(c, m)))||3

Kreuk, Adi, Singh, Raj, and Keshet, 2019



STFTHISTFT within the network

Message
Decoder

STFT

e

Message / \
Decoder ISTFT

Carrier
Decoder

Carrier
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Encoder
Network

Encoder
Network

Kreuk, Adi, Singh, Raj, and Keshet, 2019



Example 1
Original Carrier @
Reconstructed Carrié@

Original Message

Reconstructed Message

Example 2
Original Carrier @
Reconstructed Carr@

Original Message

Reconstructed Messé@e

Examples 3
Original C@er
Reconstructeg},‘arrier
Original Mé@age

Reconstructed@essage



Conditional Decoder
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Kreuk, Adi, Singh, Raj, and Keshet, 2019
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